LANGUAGES/JOHN R. WILSCHKE

FORTRAN: Not Just
For Scientists

Though FORTRAN rivals Pascal and Ada
In structure, the language still allows for
the writing of quick and dirty programs.

n the article, “‘Grandfather FOR-

TRAN,”” which appeared in this col-
umn in the last issue of PC, I talked about
FORTRAN’s entry into the microcomput-
er world and discussed some of its pro-
gramming features. As you recall, this
language allows for structured program-
ming, just as Pascal and Ada do.

While programming experts would
prefer to have a language require strict
programming practices, such structured
languages as Pascal, Ada, and PL/I tend to
be too cumbersome for small programs.
At the same time, these constraints are
welcome and needed when large compli-
cated programs are created, debugged,
and later modified. FORTRAN allows

This is the second of two articles on the
programming language FORTRAN.
PC MAGAZINE @ FEBRUARY 7, 1984

both types of programming and requires
the programmer to know when to use
each. In addition, the future version of
FORTRAN will provide further structural
capabilities that will enhance its ability to
provide clear and precise code. FOR-
TRAN will then rival Pascal and Ada in
structure, but it will still allow **quick and
dirty’” programs to be written.

Another ease-of-programming feature
offered by FORTRAN is its ability to
allow a program to be broken into sepa-
rately compiled subroutines. All of the
information passed between the main pro-
gram and a subroutine, or between two
subroutines, is tightly controlled through
Call statement arguments (for example,
CALL TIME (HRS, MIN, SEC)) or
Commeon Blocks (for example, COM-
MON /BLOCKI1/ HRS, MIN, SEC).

Unlike BASIC, this is the only way
variables are shared between calling and
called routines. This allows a programmer
to debug his program in easily understand-
able blocks and to assemble those blocks
into the final program with the linker. A
change in one block does not require that
the whole program be recompiled, which
prevents you from wasting time. The
FORTRAN programmer can then create a
*‘library’’ of already debugged and com-
piled subroutines to be used in new pro-
grams.

FORTRAN’s popularity is well estab-

lished. You rarely hear the argument that a
programming language is good because 1t
is popular, but popularity should be a fac-
tor. A good computer program, like a
good novel, is more valuable if it can be
used and understood in more than one
place. Rarely is a program transportable
among different computers if the language
used is not supported on both computers.
Even when the same languages are sup-
ported, if they are not standardized ver-
sions, one must be wary of differences.
One of FORTRAN’s outstanding features
is that it is so standardized that it is avail-
able for many different computers—it is
one of the most transportable languages
available.

FORTRAN subroutine libraries that
contain proven solutions to many prob-
lems exist in the public domain and are for
sale. IMSL, Inc. (NBC Bldg., 6th Floor,
7500 Bellaire Blvd., Houston, TX 77036)
is planning to offer a subset of its over 500
FORTRAN subroutines for use on micro-
computers. Also, at your local college
library, you'll find a huge pool of FOR-
TRAN programs and solutions for almost
any field of computing.

FORTRAN is an efficient and power-
ful language. There seem to be some stan-
dard features necessary in any general pro-
gramming language. The ability to manip-
ulate high-precision numbers quickly will
provide the speed and accuracy required
for many business and scientific/engineer-
ing applications. The ability to perform
string/character operations makes word
processing and report generating programs
practical. The ability to program in sepa-
rate modules for later combination with
more complex programs greatly increases
the power of the programmer to organize
and develop sophisticated applications. A
language that fails to provide these
requirements as standard has limited use.
The better implementations of FORTRAN
contain all of these features.

But why not use the popular Pascal?
While it is an International Standards
Organization (1SO) language, the standard
itself is not very complete. Standard Pas-

cal does not support such important fea-
tures as ¢xponentiation, double-precision
real numbers, complex arithmetic, or
modular programming. Although IBM
Pascal has exponentiation and modular
programming, there is no assurance the
IBM enhancements will conform to a
future Pascal standard. The “*power’’ that
FORTRAN lacks, when compared to Pas-
cal, is the ability to directly access the
memory or operating system. If the
POKE- and PEEK-type commands are
important to you, FORTRAN may not be
for you. However, the ability of a FOR-
TRAN program to incorporate subroutines
written in Assembly language, or even in
languapes such as Pascal, provides an
alternate means for those who wish to
access the most primitive parts of the com-
puter.

FORTRAN Compilers

The ability to use any language
depends upon the availability of good
compilers/interpreters. New FORTRAN
compilers are now appearing for the PC,
and each one seems to be better than the
last. While so far none has the full power
of the FORTRAN 77 standard, before
long one that does should appear. The
IBM PC, with its large addressable mem-
ory space and the 8087 numeric coproces-
sor, is one of the first micros that could
fully support such a compiler. Four of the
available computers are looked at here.

IBM FORTRAN Version 1.0 is an
unfortunate choice. At last count there
were 45 pages of patches for known errors
in this compiler. If you own IBM’s FOR-
TRAN 1.0, you can get a patched update
from your dealer.

This compiler lacks double-precision
real numbers and uses a real-number for-
mat that is incompatible with the 8087
numeric coprocessor. While it supports a
subset of the FORTRAN 77 standard, it
has some serious omissions, such as the
lack of list-directed 1/0O for easy communi-
cations from the keyboard to the program.
It also poorly documents the compiler
defaults. Many users are unaware that the

compmier generates up o two-thirds more
code than necessary. It is hard to under-
stand why the onginator of FORTRAN
would put out such a poor product.

The FORTRAN for the UCSD P-Code
system operates under the UCSD system,
which is not the defacto standard for the
IBM PC. UCSD FORTRAN incurs an
efficiency penalty by compiling only to a
P-code level. This P-code must then be
interpreted at run time, just as it is in inter-
pretive BASIC. However, if you use the
UCSD system, this is the compiler for
you.

Supersoft FORTRAN 1V Extended
(Version 1.04) could be the most efficient
FORTRAN compiler available for the
IBM PC. In tests, its programs run two to
three times faster (when an 8087 is not
used), than those of the IBM or Microsoft
versions. The compiler has double-preci-
sion real numbers and complex numbers.
(Complex numbers are very powerful
tools for solving problems in areas such as
electrical engineering.) It uses the IEEE
real-number format, and an optional pack-
age can be purchased to access the 8087
coprocessor. Also provided is an assort-
ment of useful subroutines, which allow a
FORTRAN program to access the operat-
ing system and maintain control of the
screen,

Unfortunately, like the IBM BASIC
and Pascal compilers, the Supersoft FOR-
TRAN IV compiler limits the amount of
data space to 64K. This includes all com-
mon data (shared between subroutines),
local variables (only used inside a subrou-
tine), format definition statements (for
input and output), the stack (for transfer of
data between subroutines), and the heap
(file control blocks). Even for moderate-
sized programs, 64K can be a limitation.
In addition, the commonly used 4-byte
integer is not allowed. 1 was told by Dale
Jurich, the author of the Supersoft FOR-
TRAN IV Compiler, that future revisions
will correct these problems.

But probably the most serious problem |

is that it is not close to a standard FOR-
TRAN. While it calls itself a FORTRAN

I¥V(060), It has included some but not ali of
the FORTRAN 77 enhancements. FOR-
TRAN 77 features, such as character data,
are manipulated with subroutine calls rath-
er than with the standard operators. The
interactive list-directed IO and error han-
dling are also non-77 standard.

Microsoft’s FORTRAN 77 Version
3.1 has a language structure very similar to
the one offered by the original IBM FOR-
TRAN compiler. It even retains many of
the same metacommands for control of the
compiler options. If you have developed a
program for the IBM version, it should
compile almost immediately with MS-
FORTRAN 3.1. What makes this one dif-
ferent from the IBM version is that this
one works. Microsoft has not enly fixed
the emrors of the IBM FORTRAN compil-
er, but provided much more.

It now allows double-precision real
numbers, uses the IEEE floating-point
number format, and allows access to the
8087 coprocessor. A large program took
1.5 heurs to run using code produced by
the Microsoft compiler; when the same
program was run on a PC with an 8087,
the running time was 6 minutes!

Microsoft’s compiler still seems to
produce inefficient code compared to the
Supersoft version, at least without use of
the 8087. It also does not provide the
FORTRAN 77 character operators. This
puts a penalty on those programs that do a
lot of text manipulation. And the FOR-
TRAN manual needs better explanations
of the error messages (as do most other
manuals). However, this is a very work-
able compiler. Perhaps, when the micro-
computer world discovers it, Microsoft
will be encouraged to provide further
improvements such as the character oper-
ators.

These days, FORTRAN is no longer
just a languape for scientists. It is easy to
learm and should be attractive to nonpro-
fessionals moving up from BASIC. If you
choose FORTRAN, you will be using an
efficient and powerful language that will
improve in the future without sacrificing
the hard-won lessons of the past. |

PC MAGAZINE ® FERBRUARY 7, 1984

