CHAPTER ¢4

RUNNING FORTRAN-77 PROGRAMS ON THE IBM/PC

4.1 FORTRAN - A History

FORTRAN (short for FORmula TRANslation) was the first
symbolic language of the procedure-oriented type (see
Section 1.3). The earliest version of the language, naw
called FORTRAN-1, was developed at one of IBM's research
laboratories in the mid-1950s. An improved version, called
FORTRAN-II1, was introduced in 1958 for use aon IBM's first
large scientific computer, the IBM 704.

Virtually every other computer manufacturer produced
translating programs called compilers (see Section 1.3) for
versions of the language for use on their own machines, and
by the time the IBM 360 family of computers came onto the
market in the mid-1960s, FORTRAN was well entrenched as the
major computing language for scientific and engineering
applications (another language, called COBOL, played a
similarly dominant role for business applications).

IBM released translatars for a much-improved, but
compatible, version of the language called FORTRAN-1V with
the introduction of the 360 computers. There were (and
still are) many variants or dialects of the FORTRAN-IV
language in use on different computers or by different
industrial and academic groups. 1n 1966, ANSI, a
professional standards group, prepared definitions for two
FORTRAN standard languages, called the full language
(intended for implementation on large computers), and the
subset language (for implementation on small computers).
The subset language is "upward" compatible with the full
language (i.e., programs written in the subset language also
satisfy all the syntactical rules for the full language).
These standard languages are called FORTRAN-66, but the
labels "FORTRAN-IV" and "FORTRAN-66" are used more or less
interchangeably.

FORTRAN - A History 4.01



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

4.2 FORTRAN-77

In 1977, the ANSI group formulated a new set of
standards for a considerably improved structured version af
FORTRAN., Here, "structured" refers to a programming concept
first formulated by Prof. Niklaus Wirth of the Technical
University of Zurich (the designer of the pracedure oriented
language PASCAL and of the newer Modula-II language).

Roughly speaking, the structured approach to programming
consists of breaking the overall problem into individual
tasks or "modules"” based on notions of iteration,
sequencing, and selection. Individual modules are arranged
in a hierarchial structure, each module having just one
entry point (starting place) and one exit point. Control is
passed from module to module in a downward sequence, with
few 1f any unconditional branches to higher levels of the
structure., Structured programs have, for example, very few
GOTO statements, and tend ta be much easier to "read" (in
the sense of reading text in a natural language from top to
bottom of a page) than nonstructured ones. Flow diagrams
are not much used for describing structured algorithms
because of this natural forward sequencing in the logic.

The structured version of FORTRAN defined by the ANSI
group is now called FORTRAN-77. Again the standard
consists of two definitions, a full implementation language
and an upwardly compatible subset language. This version of
the language is now the most popular one.

Interestingly, the FORTRAN-77 language standards are
defined in such as way that, with few exceptions, programs
written in standard FORTRAN-66 {(an unstructured language)
are upward compatible with FORTRAN-77 (a structured
language). Therefore, it is possible to write unstructured
as well as structured programs using FORTRAN-77 (the syntax
for languages such as PASCAL tends to enforce the writing of
structured programs). For this reason, many computer
scientists consider FORTRAN to be an archaic programming
language. Nevertheless, FORTRAN is still the most-used
computing language for numerical calculations in engineering
and the sciences.

Most "good" programmers use structured approaches to
program formulation insofar as possible, regardless of the
programming language used. In this context a "good"™ program
is by definition a program that not only "works" (i.e.,
produces correct answers), but one whose logic is clear and
can be understood easily by others. This latter
characteristic is critically important when one programmer
(or group of programmers) writes programs but different
people maintain and improve them later on (a common

4.02 FORTRAN-77



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

situation in almost all industrial, governmental, and
academic organizations).

4.3 FORTRAN Compilers on MTS

There are several different compilers for various
versions of FORTRAN on the University's mainframe IBM 3090
computer operating under control of MTS (described in
Chapter 5). The most important of these are available to
all users of MTS in the following public files:

1. *FTN IBM "G-level" compiler for FORTRAN-IV
programs.

2. *FORTRANH IBM "H-level" compiler for FORTRAN-1IV
programs.

3. *WATFIV University of Waterloo (Canada) complier
for WATFIV (a dialect of FORTRAN-1V)
programs.

4. *sFORTRANVS IBM compiler for programs written in
FORTRAN-77.

The #FTN compiler is probably the most used of the four;
it is a resident program in the virtual memory (see Section
5.2) of the IBM 3090 computer, meaning that it is available
essentially instantaneously (no loading from system disk
storage) and reentrant, meaning that many users can be
accessing the same memory-resident copy of the compiler at
essentlally the same time (in timesharing operat1on mode, as
described in Chapter 5).

The *FORTRANH compiler is an optimizing compiler,
meaning that it produces object versions of FORTRAN-66
source programs that run considerably faster than those
produced by *FTN. 1Its compilation costs are quite high in
comparison with *FTN, so it is not normally used until the
program has been thoroughly tested and debugged with a less
expensive compiler, and then only for programs that will be
used frequently.

The *FORTRANVS compiler, from IBM, is an implementation
of the full FORTRAN-77 language standards (with some
nonstandard additional features also). Like *FTN, this
compiler is resident and reentrant; it is somewhat more
expensive to use than *FTN, but produces excellent object
code.

FORTRAN Compilers on MTS 4.03



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

4.4 FORTRAN-77 Compilers for the IBM/PC

FORTRAN compilers for personal computers are not very
common, BASIC being the most used programming language for
microcomputers. However, quality compilers have come onto
the market during the past few years. The most popular of
these are: (1) Microsoft FORTRAN compiler, for the subset
version of FORTRAN-77, (2) Professional FORTRAN compiler (by
Ryan-McFarland), for a full implementation version of
FORTRAN-77, and (3) Microsoft FORTRAN Optimizing compiler,
another full-implementation version of FORTRAN-77.

We have adopted Microsoft's Optimizing FORTRAN 77
compiler for use in the introductory computer course for
engineering students because: 1) it supports all of the
structured features of ANSI standard FORTRAN 77, 2} it is
compatible with previous versions of FORTRAN (still very
popular with scientists and engineers, with an enormous base
of well tested programs), 3) it is upwardly compatible with
Microsoft's subset FORTRAN compiler used on the CAEN
Laboratory IBM/PCs, and 4) it is fully compatible with the
MTS version of the IBM mainframe FORTRAN-77 compiler (the
*FORTRANVS compiler available on the IBM 3090).

We have authored a companion text, FORTRAN-77 (with MTS
and the IBM PC) that covers algorithm development and
programming using the ANSI Standard FORTRAN-77 language,
with emphasis on the Microsoft implementation for the IBM
PC, PC-XT and PC-AT. Henceforth, when we refer to Microsoft
(MS) FORTRAN we will be referring to the optimizing full-
implementation compiler.

The Microsoft (MS) (optimizing) FORTRAN compiler is now
installed on all of the IBM PCs, PC-XTs and PC-ATs in the
Freshman Engineering College laboratories. The intent of
this chapter is to familiarize you with use of this compiler
on these IBM/PCs. Later, in Section 4.8, we describe use of
Microsoft's subset FORTRAN compiler installed on the the
CAEN laboratory IBM/PCs.

Throughout this chapter, we assume that your FORTRAN-77
program has already been written, probably with the
assistance of a visual-editing program, such as VEDIT, and
that it has been stored on a diskette in a DOS file with the
file-name extension .FOR. The particular extension .FOR is
required by the MS compiler (it also helps to point out
which files contain FORTRAN programs). Throughout this
chapter, we will call the DOS diskette file containing the
source FORTRAN-77 program PROG.FOR.

4.04 FORTRAN-77 Compilers for the IBM/PC



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

4.5 Compilation, Linking, and Execution

The translation of your FORTRAN source program and its
eventual execution by the computer is a three-step process,
as described briefly in Section 1.3 and illustrated in
Figure 1.3.

Step 1: Compilation is the process that translates an
algorithm represented in the symbolic FORTRAN language (the
source program) into an equivalent algorithm in the
machine's language called the object program. There may be
several individual source programs (called subprograms in
FORTRAN parlance) involved in a "package" or "suite" of
programs required to solve a problem. Typically, the
compiler treats each subprogram separately to produce
individual object programs ithe individual source programs
can even be translated at different times).

Step 2: Linking is the process that gathers together the
individual object programs, along with any library programs,
and produces a single interconnected machine language
program called the object module. Library programs perform
commonly needed tasks like trigonometric furction
evaluation, and are already available in object form,
usually on disk storage in a library with name extension
.LIB,

Individual machine language programs are usually
compiled into relocatable form, meaning that they can be
moved (relocated) as blocks of instructions to any block of
addresses in the main store, provided there is sufficient
unused memory available. The process of linking the
individual programs together to create the object module
involves a significant amount of address recalculation by
the linker, since any addresses associated with operands in
the program must be modified to account for the relocation
of the programs in the memory.

Step 3: Execution involves the loading of the object
module produced by the linker into the computer's main store
(the program that does the memory loading is called a
loader) and then turning over control of the central
processor to it. The executing program reads the user's
data from input devices or files and writes results for
disp%a¥ or printing on output devices or for storage in a
file(s).

Compjlation, Linking, and Execution 4,05



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

The three steps, viewed from the standpoint of the

programs involved and their inputs and outputs are:

Compilation Program: compiler
Input source language programs

Output relocatable object programs
Linking Program: linker
Input : relocatable object programs from
compilation and library
Output : object module
Execution Program: object module
Input : user's data (from keyboard,
disk files)
Output : user's results (to monitor,

printer, disk files)

The responsibility for actually loading each of the
programs (compiler, linker, object module) into the main
store is assumed by yet another program called the loader,
one of the operating system (e.g., DOS) programs. In some
cases (almost always, in large computing systems), the
linking is done in conjunction with the loading, and the
program that does the dual job is called a linking loader.
For microcomputers, the linker tends to be tied more closely
to the compiler than to the operating system, and the
compiler manufacturer distributes a linker with the compiler
as part of the software package. This is the case for
Microsoft's FORTRAN-77 compilers.

4.6 The Microsoft Compiler/Linker for the I1BM PC

In Microsoft's implementation of the compiler/linker,
the compilation task involves either two or three passes,
i.e., the compilation "step" is in fact more than one step
involving processing by two or more programs, all of which
constitute the compiler. The two (or three, depending on
some user options, such as code optimization) passes are:

Pass 1 Translates the source program, stored in the
file PROG.FOR for example, into an intermediate

4.06 The Microsoft Compiler/Linker (IBM PC)



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

form, consisting of some temporary files that
will be used by later passes of the compiler.
It also produces a program-listing file, whose
name has the extension .LST (PROG.LST, for
example), which is important because it
identifies and explains, as far as possible,
any syntactical (language) errors in the source
program.

Pass 2 Takes the intermediate files produced in Pass 1
and generates the relocatable object code. The
output from Pass 2 is an object program (or
programs) that is (are) stored in a file whose
name has the extension .0BJ (PROG.OBJ, for
example). Also deletes the intermediate files
from Pass 1, and generates more intermediate
files that may be needed by Pass 3.

Pass 3 Optimizes the object code, improving the
efficiency of calculation of certain
expressions, particularly if they have elements
in common. Can also produce an optional
listing of the object program (in hexadecimal
code) in a file with the name extension .COD,
or of an assembly language version of the
program in a file with the name extension .ASM,
and/or of a file containing detailed
information about all of the programs in an
object module in a file with name extension
.MAP. Since very few programmers need such
listings, we will ignore this latter feature.

The linker then takes the individual relocatable object
programs produced by the compiler, stored in the file (or
files) with extension .OBJ, links it (them) with the
necessary library programs (present in one or more library
files with the name extension .LIB), reassigns memory
addresses, and generates a final object module that can
subsequently be loaded into the fast memory of the IBM/PC
and executed. The output from the linker is in a file whose
name has the extension .EXE (PROG.EXE, for example),

As supplied by Microsoft, the compiler files are stored
on six double-sided diskettes. Although it is possible use
floppy disk versions of the compiler and linker on a dual-
floppy drive IBM PC, it is a very tedious process. 1In
essentially all cases, one wants to have the compiler/linker
files stored on the hard disk of a PC-XT or PC-AT, or for
networked machines to have the files stored on the hard disk
of the network file server(s). The most important of these
files are listed in Table 4.1.

The Microsoft Compiler/Linker (IBM PC) 4,07



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

Table 4.1 Important Files in the MS FORTRAN-77 Compiler
File Name Size (bytes) Purpose
F1.EXE 150, 343 Pass 1 of the compiler.
F1.ERR 15,776 Error messages for pass 1.
F2 .EXE 185,117 Pass 2 of the compiler.
F3.EXE 126,667 Pass 3 of the compiler.
F23.ERR 2,914 Error messages for pass 2
and 3.
FL.EXE 25,011 Compiler manager.
FL.HLP 1,584 Help messages for manager.
FL.ERR 1,817 Error messages for manager.
F3S.EXE 82,629 Alternate pass 3 when
optimization is disabled.
LINK.EXE 50,531 Linker.
LLIBFORE.LIB 194,048 Library file that supports

Depending on the options desired, there are several ways

coprocessor (e.g., Intel
8087) if present; other-
wise, floating-point
calculations are done
using software.

of calling the various programs that constitute the

Microsoft compiler.

The sequence of compilation activity is

controlled by the "manager" program in the file FL.EXE, in
response to input from the user.

4.08

Some of the more important files that are used or
produced (some optionally) by the compiler are shown in
Figure 4.2.

The Microsoft Compiler/Linker (IBM PC)



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

Table 4.2 Symbolic Names Used by Compiler

Name

progfile.FOR

progfile.LST

progfile.ORJ

progfile.ASM

progfile.COD

profile . MAP

Meaning

File containing FORTRAN source
program,

File that will contain the
program listing and diagnostics
generated by the compiler.

File that will contain the
relocatable object program
generated by the compiler.

File that will contain the
assembly language version of
the program.

File that will contain the
machine language version of the
program,

File that will contain
memory mapping information
about the object programs
generated.

Here progfile.FOR is your original FORTRAN source
program file, e.g., PROG.FOR. The file progfile.LST will
contain a listing of your FORTRAN program statements, any
diagnostic error messages describing errors in FORTRAN
syntax, and other information such as a listing of all
FORTRAN variables, arrays, and functions and subroutines
referenced in the source program and total memory space

required. The other files are in general not of interest to

ordinary mortals.

If your source program contains an error (usually caught

by pass 1 of the compiler), then the compilation/linking
process will be aborted, and you can examine the listing

file to determine the nature of any errors found.

then be used to make corrections in the file progfile.FOR,
and the compilation/linking operations can be attempted

again.

Table 4.3 lists the symbolic names of the most important

files involved in the linking operation (when LINK.EXE is

being executed).

The Microsoft Compiler/Linker (IBM PC)

VEDIT can

4.09



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

Table 4.3 Symbolic Names Used in Linking

Name Meaning
progfile.OBJ File(s) that contains the object
program(s) produced by the
compiler.
library.LIB File(s) containing object versions

of the library programs. The major
library file is LLIBFORE.LIB,

but other library files may also

be used under some circumstances,
depending in particular on the
availability of a coprocessor.

progfile.EXE File that will contain the final
executable object module.
available.

The most important file from the user's standpoint is
the final executable load module file progfile.EXE. The
file progfile.OBJ may be of interest if other object program
files, produced with a different execution of the compiler,
are to be linked together.

4.7 FORTRAN-77 in the FEC Laboratories

In the Freshman Engineering Computing Laboratories, all
of the compiler program files shown in Table 4.1 are stored
permanently in a subdirectory named \FORT77 on the hard disk
(drive D:) of the Ethernet Network fileserver. [Note that
the IBM PCs in the FEC laboratories are not equipped with
Intel 8087 coprocessors, and the file LLIBFORE.LIB is the
appropriate library file needed by the linker.]

To simplify student use of the compiler, there is a
batch file (see Section 2.11.2) named FORT77.BAT on the
Network fileserver., This batch file handles all of the
details of the multiple-pass compilation/linking operations.
During the processing, the compiler and linker files are
downloaded from the Network disk into the main store of your
IBM/PC. Intermediate files produced by the compiler are
stored on your personal diskette. In most cases, the
compiler programs erase these files, once they are no longer

4.10 FORTRAN-77 in the FEC Laboratories



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

needed, so you will not see them in your diskette directory
after processing. In addition, the relocatable object
program file with the name extension .0BJ is erased after
the linking process is complete, to save space on your
diskette.

To compile and link a FORTRAN-77 program, do the
following:

Step 1: Prepare your FORTRAN source program using
VEDIT, and store it in a file named
progfile.FOR on your diskette in Drive B: Here
progfile is any legal DOS file name.

Step 2: Be sure that the master diskette is in Drive
A: and your personal diskette is in Drive B:.
Do not change the default drive from A:.

Step 3: Enter the DOS command:
A:\>FORT77 progfile<cr>

Note: Do NOT append the drive name B: to the name of your
source program file, even though A: is the default drive;
the batch file takes care of this apparent inconsistency.

Note: Do NOT include the filename extension .FOR in the DOS
command line; doing so may cause your file progfile.FOR to
be modified unexpectedly during the compilation process.

If there are no FORTRAN language errors, compilation and
linking will be successful and when the DOS prompt A> shows
again, the following files will be present on your personal
diskette:

progfile.LST
progfile.EXE

If there is an error encountered during the compilation
process, one or more intermediate files with name extension
(.TMP) produced by the compiler may be present on your
diskette. You can erase them, if you are short of space on
your diskette.

The .LST file contains a listing of the program, some
information about the size of the program, etc. You can
print a copy of the program listing on the printer if you
wish (using the DOS commands COPY or PRINT), or display the
file on the screen using the MORE filter.

FORTRAN-77 in the FEC Laboratories 4.11



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

The file progfile.EXE contains the executable linked
object module. To execute the object program, simply enter
the DOS command:

A:\>B:progfile<cr>

If there are FORTRAN source language errors in your
program, then the Microsoft compiler will abort execution of
the later passes of the compiler and of the linker, and no
progfile.OBJ or progfile.EXE files will be generated.
However, the listing file progfile.LST will be present on
your diskette. You should list the file on your printer or
display it on the screen using the MORE filter, and note any
diagnostics (error messages) produced by the compiler. Once
vou decide what the problem is, use VEDIT to correct the
errors in the source program in progfile.FOR and attempt to
compile the program again.

In what follows, we illustrate the above material by
reproducing the output that appeared on the monitor during
compilation of a short FORTRAN-77 program stored in the file
TRI1.FOR (the program that appears in Example 1.1 in Chapter
1l of our companion text, FORTRAN-77 (with MTS and the IBM
PC). For emphasis, we have put what we typed in boldface.

A:\>FORT?77 TRI1<cr>

A:\>Echo Off
Microsoft (R) FORTRAN Optimizing Compiler Version 4.0
Copyright (C) Microsoft Corp 1987. All rights reserved.

tril.FOR

Microsoft (R) Overlay Linker Version 3.55
Copyright (C) Microsoft Corp 1984, 1985, 1986. 211 rights
reserved.

Compilation/Linking OK ...
Compilation is now complete, and the final object module is
in the executable file TRI1.EXE on the B: drive. It is

executed simply by typing its name, with or without the
extension .EXE:

4,12 FORTRAN-77 in the FEC Laboratories



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

A:\>B:TRIl1<cr>

45.0, 10.0<cr>

45.0000000 10.0000000 9.9999880 14.1421300
60.0, 10.0<cr>
60.0000000 10.0000000 17.3204800 19.9999700

(At this stage, execution was terminated by entering <Ctrl-
Break>, an attention interrupt. We could also have entered
<Ctrl-Z), an end-of-data-file indicator.)

4,83 FORTRAN-77 1in the CAEN Laboratories

The program files for the Microsoft subset FORTRAN
compiler and linker are stored in a subdirectory named
FORT77 on the hard disk (Drive C:). The subdirectory is in
the directory search path (see Section 2.21.3), so the
compiler and linker can be accessed at any time, regardless
of current directory and default drive assignments. The
names of the files for the three passes of the compiler are
FOR1.EXE, PAS2.EXE and PAS3.EXE in this case; however, the
general sequencing of compilation/linking with the subset
compiler is very similar to that used for the full-
implementation compiler described in the previous sections.

There is a batch file named FORT77.BAT in the
subdirectory FORT77 that is very similar to the batch file
named FORT77.BAT used to compile and execute FORTRAN-77
programs on the IBM/PCs in the FEC Laboratories described in
Section 4.7. The procedure for using the batch file
FORT77.BAT to compile and execute FORTRAN programs on the
PC-XT and PC-AT computers in the CAEN Laboratories is
described in the on-line documentation (present in a file in
the \HELP subdirectory on the hard disk. The document is
reproduced here verbatim. You can see a copy of this
document on the screen by entering:

C:\USER>HELP MSFORT77<cr>

FORTRAN-77 in the CAEN Laboratories 4,13



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

USING MICROSOFT FORTRAN 77 ON THE CAEN IBM PC-XTs and PC-ATs

General Information

MicroSoft FORTRAN for-the IBM/PC running under PC/DOS is an
implementation of the subset FORTRAN-77 language standard
with many features from the full FORTRAN language standard
included. Programs written in Microsoft FORTRAN are upward-
compatible with the full standard, and will normally compile
without change using the full language IBM FORTRAN-77
compiler *FORTRANVS on MTS (see Section 5.11.1).

Programs written in FORTRAN-66 that compile successfully
using the *#FTN and/or *FORTRANH compilers on MTS, will
compile with little or no change using the Microsoft
FORTRAN-77 compiler. 1If you have a FORTRAN-66 program
stored in an MTS file and you would like to run it on the
PC-XT or PC-AT, you can use the WINDOW program (catalogued
under subdirectory C:\BIN) to telecopy the source program to
a PC-XT or PC-AT file and then compile it using the
Microsoft FORTRAN compiler.

Depending on the nature of the Input/Output statements in
your program, it may be necessary to make a few minor
changes in the source program when switching from MTS to the
PC-XT or PC-AT and vice-versa.

A reference manual for Microsoft FORTRAN 77 is available
from the CAEN Laboratory Monitor,

Compiling and Linking a MicroSoft Source Program

You should prepare your FORTRAN-77 source program using the
VEDIT or EDIX visual editors for the PC-XT or PC-AT,
catalogued under subdirectories C:\VED and C:\WPIX,
respectively (or telecopied from MTS).

The program should be stored on your own floppy diskette
present in Drive A: of the PC-XT or PC-AT, and the program
file should have the file name extension .FOR . For
example, the following would be acceptable file
designations:

A:MYPROG.FOR

A:PROB1.FOR
A:SOURCE,FOR

4,14 FORTRAN-77 in the CAEN Laboratories



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

The usual FORTRAN statement formats should be used for the
source program file lines (columns 1-5 for a statement
number, column 6 for continuation, columns 7-72 for the
statement, a C in column 1 for a comment).

When you are ready to compile and execute your FORTRAN
program, do the following:

1. Change the default drive to A: by entering
A:<cr>

where <cr> is the RETURN (ENTER) key.

2. Enter (boldface characters only)
A:\>FORT77 XXXXXXXX<Cr>

where xxxxxxxx is the name of the source program file
without the file name extension .FOR, e.g.:

A:\>FORT77 MYPROG<cr>

DOS will then process the commands in the batch file named
FORT?77.BAT that is catalogued under subdirectory

C:\FORT?77

3. The first pass of the FORTRAN compiler, named FOR1,EXE
will automatically be loaded from the C:\FORT?7 subdirectory
and begin to process your source program. Several files
will be written onto your diskette in Drive A: including:

XXXXXXxxx,LST
PASIBF.BIN
PASIBF.SYM

As before, xxxxxxxx is the name (without extension) of your
original source program file (e.g., MYPROG). The first of
these files contains a listing of the source program, plus
diagnostic messages (if syntactical errors are detected).
If an error message appears on the screen, then further
compilation is aborted, and you can examine the file
xxxxxxxx .LST for pertinent error messages, make necessary
corrections in the source program file xxxxxxxx.FOR, and
then return to step 2.

4. If no errors are encountered in step 3., then the second
pass of the compiler from file C:\FORT77\PAS2.EXE is
executed automatically. The files PASIBF.BIN and PASIBF.SYM
will be erased, and three new files will be created.

XXXXXxxx.0BJ
PASIBF.TMP

FORprAN-77 in the CAEN Laboratories 4.15



Chapter 4: Running FORTRAN-77 Programs on the IBM/PC

PASIBF.OID

1f errors are detected, compilation will stop. You can then
examine the file xxxxxxxx.LST for diagnostic messages, make
corrections in xxxxxxxx.FOR, and return to step 2.

I1f the compilation is successful, the object version of your
program will be left in the file xxxxxxxx.0OBJ. The files
PASIBF.TMP and PASIBF.OID are temporary files used by the
compiler for scratch space. They will be erased
automatically if the compilation is successful.

5. If no errors are detected by the compiler, the MicroSoft
linking program (from file C:\FORT77\LINKER.EXE) will be
loaded automatically and your object program in file
XXXXXXXX.0BJ will be linked with any essential routines from
the FORTRAN library (from file C:\FORT\FORTRAN.L87). The
linked object module will be stored in the file

XXXEXXXXX . .EXE

on your diskette in Drive A:,

Executing a Compiled and Linked Microsoft FORTRAN 77 Progqram

To run your linked object program in the file xxxxxxxx.EXE,
simply enter:

A \>XXAXRXRX<Cr>
For example,
A:\>MYPROG<cCr>

Depending on how you have specified the Input/Output files/
devices in the program, your program will then process your
data and produce the output directly, or will prompt you for
device assignments before proceeding with the calculations.

If you wish to practice with an existing demonstration
program, simply copy the file C:\FORT77\DEMO.FOR to your
diskette in Drive A:, switch the default drive to A: and
enter DEMO as the name of the source file in step 2.

4.16 FORTRAN-77 in the CAEN Laboratories



